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3 . ABSTRACT

_ \-—}Expected information gain as a result of 1life testing n units for time

5 / t 1s calculated for the time transformed exponential model and a utility
function based on entropy. We show that the expected information gain is
> concave increasing in n and a transform of the test time t . A computer

program for calculating expected entropy for the Weidbull distribution model

2 is given. s may provide practical guidance in designing life test ex-
k> periments.
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EXPECTED INFORMATION FROM A LIFE TEST EXPERIMENT

. -

by

Richard E. Barlow and Jaw Huan Hsiung

" 1. INTRODUCTION

P s T

In considering & life test experiment, two questions to be answered

e

* PAKEIIT I bt
IR 2 %p
e

How many items should be tested?

and

K

How long should we be prepared to wait before analyzing the data?

As Lindley (1956) pointed out, "the object of experimentation is (often)

not to reach decisions, but rather to gain knowledge about the world."

» Hence,we do not consider the cost of experimentation directly in a con-
§ ventional decision analysis approach to the solution of our problems.
% Li

Instead, we consider the influence of sample size and test time on various
measures of expected information to be gained.

Since the objective of testing is to gain information sbout life
times of similar items, we need to determine how our expected measure of
information to be gained depends on sample size as well as test time.

By information, we mean anything which changes our probability distribu~
tion about unknown quantities. To measure this change we use a utility
functioﬁ, u(Ar,d(D)) , wvhere A is the unknown life distribution para-
meter of interest and the decision taken, d(D) , based on observed data
D , will (in this paper) usually be identified with the posterior mean
. or the posterior demsity. The expected gain in information based on n

observations can then be measured dy
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g(n) = E mfu(x,d)n(x | Dya)dr} - mfu(x,d)u(x)dx (1.0)
d 4 d 1

vhere A is the parameter space, w 1is a prior density for A and
L{¢) | D) v:l.s the posterior density for A given data D and d belongs
to some appropriate decision space. Raiffa and Schlaifer (1961) call
(1.0) the expected value of sample information. The expression is easily
seen to be nonnegative. This idea of measuring expected information as
expected utility has been discussed by DeGroot [(1970), pp. 429-433] and
more recently by Bernardo (1979).

To illustrate ideas, first consider a non-life test situation where
n normslly distributed measurements are to be made. Suppose our uncer-

2

tainty sbout measurement X given 6 and ¢~ is measured by a R(a,oz)

2 is knowm but 6 1is unknown

distribution. For convenience, suppose O©
80 that we wish to learn about 6 . Let our prior uncertainty for 0 be
measured by a u(e o.yz)_ distribution. Let X)sXgy coes X be n in-

dependent (given 0) observations so that

x= (x, + oo +x)/n

2
given 6 has a N(9,°—) distribution while 6 given x has a
n

u(u(i),r:) distribution with mean
u = (1 - w)o,_ + wx

and variance
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2
vhere w = _J_f . To measure information gained as a result of these
n

n measurements, let our utility function be

1 4if |6 d) <e
u(e,d) = { (1.1)
0 othervise .

Maximum I u(e,d)x(6 | x,n)do
d -th

« Maximum P[]0 - &]| < ¢ | x,n]
d
= P[|6 - u®| < ¢ | x,n)

#0 that d = u(x) 4s our optimum "decision” in this case. Therefore,

if we take n mesasurements, our expected utility will be

l{!u(e.u(i))i(o | in)d@} = E{P[|6 - u(x)| < ¢ | x,0]}
@ ' .

"))

This is our expected posterior probadbility that, after n measurements

1.2

are made, © 7ill be within € of the posterior mean u(x) . ¢ is the

cumulative N(0,1) distribution. One way to determine n irrespective

of cost considerations is to specify a probability p and require that

GRS
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If
z(p) . ___uz
E e du =p,
-Z(p) "
then
€
= z(p)
n
and

oe ({2 - 2

vhere [°]+ denotes greater nomnegative integer in the quantity within

brackets. If we let y = « , then we have the non-Bayesian solution

a - (22)'c2

-

A Prom (1.1) we see that our expected measured gain in information

based on n observations will be

gn) = :{fu(e,u(i)):(e | i.n)de} -{u(e.oo):(e)de (1.3)
®

where 6  is the prior mean and u(x) 4s the posterior mesn. It 1s
easy to verify from (1.2) that g(n) is concave increasing in n so
that marginal gain is decreasing in ssmple size n .

There are several reasons why a utility function such as (1.1) and
the expected measured gain (1.3) based on (1.1) might not serve as an

adequate measure of information gained.
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« where p(D,6) 1s the joint density of data D and parameter 6 while

p(D) -p(D,O)de . If o =g(w) 1s a 1-1 map of (B onto ®) and J

is the Jacobian of the transformation, then

E!D.sngz
g(a) = J’ f p(D,8(w)) || 1og [pm)n(s(w))]"”""

.J’J'p(n,g(w)ﬂ-ll log [p(nr),n(g?w))JlJl dbdw

* _D*(D,w) _ dDdw
. pr (D,w) log [P(D)n*(w)]
< where p* is the joint density of D and w . Hence (1.4) is invariamt

under 1-1 transformations of the parameter space.
We will show for the time-transformed exponential life distribution

model and the utility function

u(8,p(*)) = log p(e)

[log p(8))n(e | D)de

F
oy

P(')@

-fllos w(e | D))x(e | D)de
®

that our expected measured gain in information is concave increasing in
both sample size n and a transform of the test time t . Methods for
. calculating expected information with respect to a Weibull 1life distribu-

tion model are discussed.
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] 2. INFORMATION FROM A LIFE TEST EXPERIMENT
N - R (x)
b , ® Let F (x) =e be a specified absolutely continuous life dis-
} tribution with hazard function R, and failure rate r (x) = -ad; R (x) .
>
% Consider the life distribution model
o =AR  (x)
¥ F(x | ) =e (2.1)
. where A 1is the unknown "proportional hazard" but R, 1is specified.
-t
3 ‘ (2.1) is called the time-transformed exponential life distribution model.
ii Suppose n similar units are put on life test for the time interval
] <
_ [0,t] and we judge the model (2.1) to be an appropriate description of
%
t ; our uncertainty concerning the life length. If we observe k failures
3‘ with lifetimes X)9Xgy cees Xy and n - k survivors in [0,t] , then
. the likelihood is
[
&
-4
> . L | X)0%,0 ooy X 0t) = (“)x“Ln r (x )]
(2.2)
% .
8 1-1
-3 Clearly k and s = Z R, (x )+ (o - KR (t) together constitute
X i=1
a sufficient statistic for A . For some results,we will use the prior
\ density
; 881,52
§ o 1(A) = —T.)—— A,a,b >0 (2.3)
and posterior density
g e e N e T T A e
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2.1 A Measure of Informaticn Based on Entropy

Lindley (1956) introduced the following measure of expected informa-

tion gain as a result of performing an experiment € resulting in data D :

Ik, m(2)) = Ef[log s(x | D)In(x | D)dA -f[log 7(A) Jn(A)d)r (2.4)
A A

g
by
T
G

e

&

where the expectation operator, E , is with respect to the unconditional
'::: » distribution of the data D. . Bernardo (1979) pointed out the comnmection
' @
3 3 with expected utility where the utility function
i u(A,%(A | D)) = log n(r | D) (2.5)
P depends on A and the decision variable is =(A | D) , the posterior
v | ,
«? density at A . The entropy is -I [log n(A | D)]n() | D)dA and (2.4)
A

is the negative expected change in entropy as a result of performing E .
.3 Information measures based on (2.4) are dimensionless and as such
; may be difficult to interpret. However, (2.4) does provide a way of

ordering proposed experiments by assigning information values which are
invariant under 1-1 transformations of the parameter space, For example,
suppose we life test n units for time t and use the Weibull life
distribution model

Axu

. P(X>x | a,)) = e (2.6)

vhere o 1is known but A unknown. Also let the prior for A be

S AT P e
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g 7 | A,B) = BOA B rqay

H ° |

, Figure 2.1 and 2.2 are example graphs of expected information versus

%‘ sample size and test time respectively. For example, from the graphs,

* we can see that te;ting 3 units for 3 years results in the same infor-

; mation as testing 10 units for abogt 0.75 years. Thus,we have a means

* of comparing experiments. Information values can be related to specified

experiments. |
The parameters of the gamma prior used (A and B) were originally
specified based on the pressure vessel data analyzed in Barlow, Toland
and Freeman (1979). The shape parameter o = 1.5 was used. The graphs
show that for. these parameter values (A and B) there is little to be
gained by testing more than 3 years.
In order to obtain our main results we define the experiment £
as a quadruple {0,B,A,P} , where 0 is the space of cbservations x
e of the random vector X, B is the a~field of the subsets of D , the
probability measure (or demsity of X belongs to a family P indexed
by a parameter A € A . Suppose that the observation x 1in our ex-
periment E consists of a pair of observations X):X5 » that is,
D= 01 xD, . Let B, be the o-field over 01 induced from B by
the transformation x, = x,(X) and let P:l be the set of probability
measures on Bi (1 =1,2) . Then E:I. = {01.81,1\,1’1} (1 =1,2) are

T S LR _

two experiments. Denote the sum of the experiments El and Ez

by E = (EI’EZ) . Now we consider a related experiment Ez(xl) -

{Dz,Bz.A,Pz(xl)} » Where Pz(xl) is the set of probability measures
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)
it of x, conditional on X, - Now consider the expected information for
T . Ez were we to know the observation x, from performing El :
i -
M IE,(x),7(A | x)) = B!zfllox Q| x,,x) 100 | x,,x)
A
4
X (2.7)
ﬁ; -f[log x| xl)]r(l | xl)dl .
A
i
RIS
3 Since *(A | x,) 1s the posterior demsity of ) after x, has been
o observed, 1(52(‘1) »wx | x,)) is the measure of expected information
' gain to be provided by our observation x, after El. has been per-
: formed and x, observed. I(E, | E) - ‘xlu(ez(’l)"“ | N1,
k the average of I(Ez(il)gw(x ] x,)) over x; , 1s defined to be the
; average information to be provided by Ez after El has been performed.
o
% From nov on we shall often denote the expected informstion by I(E)
el &
when the particular prior distribution does mot have to be stressed.
. This measure of information has the following properties:
2
1. I(E) l o .
'; 2, I(E2 | El) 20,
2
3. I(El) + I(E2 | El) = I(E) where & = (El.Ez) .
\ b, 1If x, is sufficient for A , then I(El) = I(E) .
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Theorem 2.2
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5. If p(x,x, | A) = p(x, | Mp(x, | A) , t.e., x, and x, are in-

dependent when ) is given, then I(E2 | El) < I(Ez) .

6. Let E(l-) - El be any experiment and let 52,53 «s+ be independent
identical experiments. Let E(z) - (EI’EZ) and generally E(n) -

(En’E(n-l)) . Then I(E(n)) is a concave increasing function of n .

See Lindley (1956) for proofs of the above properties.

Let E be the experiment wherein n units aged t, and with
n'tl’tz ‘ 1

identical 1life distributions are put on life test to age t, (tz > tl) .
Assume statistical independence among the n units conditional on 1 .

- =AR _(x)
For the time-transformed exponential model, F(x | 1) = e ° >

I(En O,t) is concave increasing in n and also concave increasing in

lo(t) . The prior density =(1) 41s arbitrary.

Proof

.8

Since no(-) is known and continuous, Y = xo(_x) is exponentially
distributed vwith parameter 1A . Therefore, performing sa experiment for
s period [0,t] under the time-transformed exponential model is the same
as performing an experiment for a time period [o.no(:)] under the ex-

ponential model. Llet %x()) bde the prior in both cases. HNence, the meas-
ures of expected iaformstion gain provided by these two experiments are
the same. It is therefore sufficient to prove this theorem for the ex-
ponential model.
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How define

© _
® E En’o’t-b ’

Q)
E - En-k

o,t—A,t given ko failures in [0,t-A] ,

£ g |

and k, failures in [t-3,t] . ‘

. N A 15 . D
T T T B
o 0 t=A t t+d
Eu,O.t--A En-ko.t-A.t en-ko-kl,t,:ﬂ
Then
I(En.o’t .'(A)) - I(En,_o.t-A s7(2))

o | - 1€V | €9 . !Doutu-"o.t-a.t"“ | 9g2)

using the memoryless property of the exponentisl and Dy = (ko » total

time on test in (0,t=4)) , the sufficient statistic for A . Similarly

I(E(z) I E(l).f(o)) - EDIEDOI(EB"‘O"H".M"(A l bO’nl)) ’

vhere D, = (k:l » total time on test in (t-4,t)). To show concavity and

the increasing property we need only show
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By definition and property (5), we have

B 1, nkyt teae " | DgsDy)))

& - I(En-ko t,en0"? | D) | E n~kyot-b, LGRS
< I(E_ aky . ctat™ O | Dgd)

By using the memoryless property of the exponential and using the prior

s() | Dy) on the parameter space, we have I(E _ .t.tﬂ"“ | Dg)) =

I(E

ﬂ-ko,t-A,t"(A | DO)) . Therefore,

5, Ty e eene" O | DgsDy2)) SMEy ee0,e0mO | Dy)) -

But information is increasing in sample size, so that if k, is the

(random) number of failures in E(n then
. By (I(E“_ko_k e, t4aTO | DgeD ) STCE kot-d, " 1 D)) .

° Now take the expectation with respect to Do « Then

0 11(5(2) l E“).E(O)) < I(E(l) I E(o)) .
Hence, I(E, O.t) is concave incressing in t which completes the proof. ||

2.2 A C rized Method for Calculat Entr
Weibull Distribution

s Let Io(:) - x* » @ > 0 in the time-transformed exponential model.

That is, the 1life distribution of the test unit is




..................

P(lifetime > x) = exp (-3x) , where x > 0,0 >0,A>0.

This is the Weibull distribution survival probability. Assume o is
known. From (2.2), the likelihood function of A is

LO | Xy, eees Xt) = (:)Aka [ ] exp {-x I x5+ (a-Wre ”

k

The pair k and s = ] x: + (o - k)t® constitute a sufficient statistic
i=1

for A . Let K and S be the random quantities corresponding to the
number of failures and total time on test, respectively. Bartholomew

(1963) has obtained the joint density of K and S given A as follows:

k k k-1
PRek,S=s|2) = (B) 2 e T (X)¢-1)tmax 10,8 -t -k+1)]!
s (k) x-1)1 120(1)‘ ; j
H Dk(s)xke.x'

vhere
k oy k-1
B, ® = (%) w257 120 (3)entlaax 10,0 - ¢ - x + 01

The probability of observing no failure in [0,t] is

-Antc

PIKe0,Sent® | A]=¢ p(0,nt" | A)

vhere ':' means definitionm.

Assume (2.3) as the prior density of ) . Using Equation (10) in

Lindley (1956), we have
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ol
3
3& Py nt -
5 T k.8,
N I(E) = kzo p(k,s,)) log ~TOL dsd)
o . s=0 A=Q
& nt® o
: - J I f p(k,s | A)x(2) log p(k,s | A)dsdr
5 k=0
=0 A=0
Y ntu
ke n
4 -1 I p(k,s) log p(k,s)ds
5 k=0 J |
\ [ _J
3 F a a
R - I p(0,nt l A)n()) log p(O,nt I A)dxr
3 A=0
M . :
t .
1 n
2 + 1 I - p(k,s | A)%(A) log pCk.s | A)dsdr
2 k=1 s=0 A=0
l
. Pt
:1‘ - p(o,nta) log p(O,nta) - Z I p(k,s) log p(k,s)ds
% k=l Jo
nt®
R = Ay - By+ f (A (s) - B (s))ds ,
‘“ s=0
&
¥
vhere
L
"-‘ L _J
Ay = I p(0,nt® | A)x(2) log p(0,nt® | 2)dr
% A=0
] Y, a ,a a1 =bA
H < AsQ
' o
- . - o atl *
5 (b +nat)
AL ':::_;";.*.*;»::;-:;,’ - ‘ AR ;.,:_::;,;.-,’.z‘-:.; T e :"’
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o '0 - p(O,nt“) log p(0 ,nt“)
[ ne® b1 j ;Anta pha-1e-bA
) - I e ——1,73— di] log e TG dax
A=( A=0
a a
b b
= ————7x log | ——=| .
(b +nt) [(b+nt)]
Also -
Ak(s) = I p(k,s | A)n(2) log p(k,s | A)dxr ,
A=(
’ and
Bk(l) = p(k,s) log p(k,s) .
L]
Row
Y, a,8-1 =bA
Ak(.) - I D (s))‘k -As l’._??(.:)__ [log Dk(l) 4+ k log A ~ Asld)r
A=Q
l+k-1 (b+l)k
c _ - D (s) log D (s)f T (‘) dx
* pAatk-1 - (b+a))
+ ka(s) I T(a) log AdA
0
b'x”kc (b+s) )
0
I'(a + K)b"D, (s) log D, (s) (-)b‘r(a +k+1)
- PR *Ag(e) - el °
r(a)(® + s) I‘(a)(b +8)
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APPENDIX

PROGRAM INFO(INPUT,OUTPUT ,TAPE5=INPUT ,TAPE6=0UTPUT)

THIS PROGRAM CALCULATES THE MEASURE OF INFORMATION (EXPECTED
ENTROPY) OF A LIFE TEST EXPERIMENT WHEREIN THE LIFE DISTRIBUTION

OF THE TESTING UNIT IS WEIBULL DISTRIBUTION AND PRIOR IS A GAMMA
DISTRIBUTION. WE USED SUBROUTINE 'GAUSSQ' TO EVALUATE THE INTEGRAL.
'GAUSSQ' APPLIES GAUSSIAN QUADRATUE TECHNIQUES TO DO THE EVALUA-
TION OF THE INTEGRAL.

THIS PROGRAM IS GOOD FOR SAMPLE SIZE UP TO SO.

DIMENSION BB(500),X(500),C(500),ENDPTS(2)
COMMON FACTA(S55) ,TALPHA,A,B,N,H

READ 100, N, A, ALPHA, T, B

IF ( N.EQ.0) STOP

IF (N. G6T. 1) GO TO 3

INFORMATION CALCULATION FOR N=]1

TAsT**ALPHA

V=B+TA

VB=B/V

VA=VB#*A

UA=— (A*TA*VA) /V
UB=VARALOG(VA)

Al=A+l
UC=(1-VA)*(PSI(A1)-ALOG(A))
UD=A*VA* (1-VB+ALOG(VB))
XINFO=UA-UB+UC+UD

PRINT 150,N,T,ALPHA,A,B
PRINT 300,XINFO

GO TO 1

INFORMATION CALCULATION FOR N GREATER THAN 1
GENERATE FACTORIAL FROM 0 TO N

FACTA(1)=1.
FACTA(2)=1.

NN=N+1

DO 5 I=3,NN

Kel-1
FACTA(I)=K*FACTA(K)

CALCULATE AC AND 30

TALPHAST##ALPHA
HeNATALPHA
Q=B+
QQ1=(B/Q)**A
QQ2=(A*H) /Q
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AO0=-(QQ1)*QQ2

BO=(QQ1) *ALOG(QQ1)
PRINT 200,N,T,ALPHA,A,B
CO=A0-BO

PRINT 250, CO

KIND=1

KPTS=0

DO 25 I=2,3

MM=90*1

WHEN N*TALPHA IS LARGE, IT IS BETTER TO CHARGE THE VALUE OF MM,
FOR EXAMPLE MM=90*I, MM=120*I,,........, BUT THE VALUE OF MM
CANNOT GREATER THAN 500.

CALL GAUSSQ(KIND,MM,BALPHA,BETA,KPTS,ENDPTS,BB,X,C)

'GAUSSQ' RETURNS THE NODES X(I) AND WEIGHTS C(I), THEN APPROXIMATES
THE INTEGRAL BY SUM OF C(I)*F(X(I)) (I FROM 1 TO N).

D=0.0

DO 20 J=1,MM

D=D+C(J)*F(X(J))

PRINT 150, D

XINFO=CO+D

PRINT 300,XINFO

CONTINUE

FORMAT (13,F6.3,F5.2,F4.1,F5.2)
FORMAT (//10X,9HINTEGRAL=,F21.14)
FORMAT (///10X,2HN=,13,10X, 2HT=,F4.1,10X,6HALPHA=,F5.2,10X, 2HA= ,F6
.3,10X,2HB=,F5.2)

FORMAT (/ /10X, 3HCO=,F21.14)

FORMAT (//10X, 12HINFORMATION=,F21.14)
GO TO 1

END

FUNCTION F(S)

TO USE 'GAUSSQ' AN INTEGRAL (FROM A TO B) OF F(X) MUST BE BROUGHT
TO THE STANDARD INTEGRAL FORM. THIS IS DONE BY A SUITABLE CHANGE
OF VARIABLES, FOR EXAMPLE, INTEGRAL (FROM A TO B) OF F(X) EQUALS
TO (B-A)/2 TIMES THE INTEGRAL (FROM -1 TO 1) OF F(Z), WHERE
Z=(X+1) (B=A) /2+4A.

DIMENSION SUM(55),D(55),SUMM(55)
COMMON FACTA(S55),TALPHA,A,B,N,H
S=((S+1)*/2.

TIND=sTALPHA* (N-1)

IF (S-TIND) 30,30,40

D(1)=0.

GO TO 45

D(1)=N
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A 45 DO 50 K=2,N
BY o 50 SUMM(K)=0
wiN DO 70 K=2,N

s DO 60 J=1,K
- TEST=TALPHA* (N-K+J-1)
ey IF (S.LE.TEST) GO TO 65
R TT1=(S-TEST)** (K-1)
X TT2=FACTA(K+1) / (FACTA(J) *PACTA (K-J+2))
) TT3=(-1)**(J-1)
60 SUM(K) =SUM(K)+TT1*TT2*TT3
a9 65 TT4=FACTA (N+1) / (FACTA (K+1) *FACTA (N-K+1) *FACTA(K) )
b2 70 D(K) =TT4*SUM(K)
DO 80 K=1,N
] TTS=(B/(S+B))**A
E: TT6=GAMMA (A+K) /GAMMA (A)

' TT7=D(K) / ((S+B)**K)

& TT8=TT7#TT5*TT6
2. X=A+K |

& Y=PS1(X)

4 TT9=K*Y- (S*X) / (S+B)

=3 a TT10=TT9-ALOG(TT5)~ALOG(TT6)
[ 80 SUMM(K)=TT8*TT10
R XSUMM=0.
- DO 90 K=1,N
s 90 XSUMM=XSUMM+SUMM(K)
G . Fu (HAXSUMM) /2.
¥ RETURN
. END
=
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